Characterization of human iPS cell-derived cardiomyocyte sheets as a model to detect drug-induced conduction disturbance.
Izumi-Nakaseko H, Nakamura Y, Wada T, Ando K, Kanda Y, Sekino Y, Sugiyama A.
J Toxicol Sci. 2017;42(2):183-192.doi:10.2131/jts.42.183.

Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assesment of QT-prolonging drugs.
Li M, Kanda Y, Ashihara T, Sasano T, Nakai Y, Kodama M, Hayashi E, Sekino Y, Furukawa T, Kurokawa J.
J Pharmacol Sci. 2017 Jun;134(2):75-85.

Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease.
Chou SJ, Yu WC, Chang YL, Chen WY, Chang WC, Chien Y, Yen JC, Liu YY, Chen SJ, Wang CY, Chen YH, Niu DM, Lin SJ, Chen JW, Chiou SH, Leu HB.
Int J Cardiol. 2017 Apr 1;232:255-263.

CSAHi study: Detection of drug-induced ion channel/receptor responses, QT prolongation, and arrhythmia using multi-electrode arrays in combination with human induced pluripotent stem cell-derived cardiomyocytes.
Kitaguchi T, Moriyama Y, Taniguchi T, Maeda S, Ando H, Uda T, Otabe K, Oguchi M, Shimizu S, Saito H, Toratani A, Asayama M, Yamamoto W, Matsumoto E, Saji D, Ohnaka H, Miyamoto N.
J Pharmacol Toxicol Methods. 2017 Feb 2. pii: S1056-8719(17)30019-9. doi: 10.1016/j.vascn.2017.02.001.

Evaluation of the effects of power-frequency magnetic fields on the electrical activity of cardiomyocytes differentiated from human induced pluripotent stem cells.
Takahashi M, Saito A, Jimbo Y, Nakasono S.
J Toxicol Sci. 2017;42(2):223-231. doi: 10.2131/jts.42.223

Comprehensive in vitro cardiac safety assessment using human stem cell technology: Overview of CSAHi HEART initiative.
Takasuna K, Asakura K, Araki S, Ando H, Kazusa K, Kitaguchi T, Kunimatsu T, Suzuki S, Miyamoto N.
J Pharmacol Toxicol Methods. 2017 Jan – Feb;83:42-54. doi: 10.1016/j.vascn.2016.09.004.

Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease.
Chou SJ, Yu WC, Chang YL, Chen WY, Chang WC, Chien Y, Yen JC, Liu YY, Chen SJ, Wang CY, Chen YH, Niu DM, Lin SJ, Chen JW, Chiou SH, Leu HB.
Int J Cardiol. 2017 Jan 5. pii: S0167-5273(17)30028-1. doi: 10.1016/j.ijcard.2017.01.009.

A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes.
Ando H, Yoshinaga T, Yamamoto W, Asakura K, Uda T, Taniguchi T, Ojima A, Shinkyo R, Kikuchi K, Osada T, Hayashi S, Kasai C, Miyamoto N, Tashibu H, Yamazaki D, Sugiyama A, Kanda Y, Sawada K, Sekino Y.
J Pharmacol Toxicol Methods. 2016 Dec 10;84:111-127. doi: 10.1016/j.vascn.2016.12.003.

Electrophysiological Characteristics of Human iPSC-Derived Cardiomyocytes for the Assessment of Drug-Induced Proarrhythmic Potential.
Yamamoto W, Asakura K, Ando H, Taniguchi T, Ojima A, Uda T, Osada T, Hayashi S, Kasai C, Miyamoto N, Tashibu H, Yoshinaga T, Yamazaki D, Sugiyama A, Kanda Y, Sawada K, Sekino Y.
PLoS One. 2016 Dec 6;11(12):e0167348. doi: 10.1371

Recovery of oxidative stress-induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel.
Cheng YH, Lin FH, Wang CY, Hsiao CY, Chen HC, Kuo HY, Tsai TF, Chiou SH.
Biomaterials. 2016 Oct;103:207-18. doi: 10.1016/j.biomaterials.2016.06.060

Points to consider for a validation study of iPS cell-derived cardiomyocytes using a multi-electrode array system.
Kanda Y, Yamazaki D, Kurokawa J, Inutsuka T, Sekino Y.
J Pharmacol Toxicol Methods. 2016 Jun 29. pii: S1056-8719(16)30063-6.

CSAHi study: Evaluation of multi-electrode array in combination with human iPS cell-derived cardiomyocytes to predict drug-induced QT prolongation and arrhythmia — Effects of 7 reference compounds at 10 facilities.
Kitaguchi T, Moriyama Y, Taniguchi T, Ojima A, Ando H, Uda T, Otabe K, Oguchi M, Shimizu S, Saito H, Morita M, Toratani A, Asayama M, Yamamoto W, Matsumoto E, Saji D, Ohnaka H, Tanaka K, Washio I, Miyamoto N.
J Pharmacol Toxicol Methods. 2015 Dec 4;78:93-102.

Human iPSC-based cardiac microphysiological system for drug screening applications.
Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE.
Sci. Rep. 2015 Mar, 5, 8883.

Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology.
Hayakawa T, Kunihiro T, Ando T, Kobayashi S, Matsui E, Yada H, Kanda Y, Kurokawa J, Furukawa T.
J Mol Cell Cardiol. 2014 Sep 23. pii: S0022-2828(14)00291-0

Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem-derived cardiomyocytes cultured over different spatial scales.
Huebsch N, Loskill P, Mandegar MA, Marks NC, Sheehan AS, Ma Z, Mathur A, Nguyen TN, Yoo JC, Judge LM, Spencer CI, Chukka AC, Russell CR, So PL, Conklin BR, Healy KE.
Tissue Eng Part C Methods. 2015 May;21(5):467-79.

Use of Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters to Assess Potential for Chronic Treatment with Compounds to Cause QT Prolongation.
Hihara T, Yamazaki K, Taniguchi T, Yoshinaga T, Ito M, Sawada K.
Pharmacology & Pharmacy. 2014, 5, 364-371

Assessment of Testing Methods for Drug-Induced Repolarization Delay and Arrhythmias in an iPS Cell-Derived Cardiomyocyte Sheet: Multi-site Validation Study.
Nakamura Y,Matsuo J, Miyamoto N, Ojima A, Ando K, Kanda Y, Sawada K, Sugiyama A, Sekino Y.
J Pharmacol Sci. 2014 Apr 17;124(4):494-501

Beat-to-Beat Variability in Field Potential Duration in Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters for Assessment of Arrhythmogenic Risk, and a Case Study of Its Application.
Yamazaki K, Hihara T, Kato H, Fukushima T, Fukushima K, Taniguchi T, Yoshinaga T, Miyamoto N, Ito M, Sawada K.
Pharmacology & Pharmacy. 2014, 5, 117-128

Three-dimensional filamentous human diseased cardiac tissue model.
Ma Z, Koo S, Finnegan MA, Loskill P, Huebsch N, Marks NC, Conklin BR, Grigoropoulos CP, Healy KE.
Biomaterials, 2014 Feb, 35, 1367-77.

Screening drug-induced arrhythmia events using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays.
Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS, Wu H, Beygui RE, Wu SM, Robbins RC, Bers DM, Wu JC.
Circulation. 2013;128:S3-S13.

In vivo differentiation of induced pluripotent stem cell-derived cardiomyocytes.
Yu T, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura M, Kawamura T, Ito E, Kawaguchi N, Sawa Y, Matsuura N.
Circ J. 2013;77(5):1297-306.

Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells.
Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Abilez OJ, Hu S, Ebert AD, Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT, Wu JC.
Cell Stem Cell. 2013 Jan 3;12(1):101-13.

Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).
Miwa K, Lee JK, Takagishi Y, Opthof T, Fu X, Hirabayashi M, Watabe K, Jimbo Y, Kodama I, Komuro I.
PLoS One. 2013 Jul 3;8(7):e65202.

Determination of appropriate stage of human-Induced pluripotent stem cell-derived cardiomyocytes for drug screening and pharmacological evaluation in vitro.
Shinozawa T, Imahashi K, Sawada H, Furukawa H, Takami K.
J Biomol Screen. 2012 Oct;17(9):1192-203.

Dynamic link between histone H3 acetylation and an increase in the functional characteristics of human ESC/iPSC-derived cardiomyocytes.
Otsuji TG, Kurose Y, Suemori H, Tada M, Nakatsuji N.
PLoS One. 2012;7(9):e45010.

Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.
Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC.
Sci Transl Med. 2012 Apr 18;4(130):130ra47.

A novel method of selecting human embryonic stem cell-derived cardiomyocyte clusters for assessment of potential to influence QT interval.
Yamazaki K, Hihara T, Taniguchi T, Kohmura N, Yoshinaga T, Ito M, Sawada K.
Toxicol In Vitro. 2012 Mar;26(2):335-42.

Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A.
Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, Kuwahara K, Harada M, Matsuda H, Matsuoka S, Okita K, Takahashi K, Nakagawa M, Ikeda T, Sakata R, Mummery CL, Nakatsuji N, Yamanaka S, Nakao K, Yamashita JK.
PLoS One. 2011 Feb 22;6(2):e16734.

Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice.
Kaichi S, Hasegawa K, Takaya T, Yokoo N, Mima T, Kawamura T, Morimoto T, Ono K, Baba S, Doi H, Yamanaka S, Nakahata T, Heike T.
Cardiovasc Res. 2010 Nov 1;88(2):314-23.

Usefulness of field potential as a marker of embryonic stem cell-derived cardiomyocytes, and endpoint analysis of embryonic stem cell test.
Koseki N, Deguchi J, Yamada T, Funabashi H, Seki T.
J Toxicol Sci. 2010 Dec;35(6):899-909.

Improvement of the embryonic stem cell test endpoint analysis by use of field potential detection.
Koseki N, Deguchi J, Yamada T, Funabashi H, Seki T.
J Toxicol Sci. 2010 Oct;35(5):619-29.

Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs.
Otsuji TG, Minami I, Kurose Y, Yamauchi K, Tada M, Nakatsuji N.
Stem Cell Res. 2010 May;4(3):201-13.

In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes.
Tanaka T, Tohyama S, Murata M, Nomura F, Kaneko T, Chen H, Hattori F, Egashira T, Seki T, Ohno Y, Koshimizu U, Yuasa S, Ogawa S, Yamanaka S, Yasuda K, Fukuda K.
Biochem Biophys Res Commun. 2009 Aug 7;385(4):497-502.

The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells.
Yokoo N, Baba S, Kaichi S, Niwa A, Mima T, Doi H, Yamanaka S, Nakahata T, Heike T.
Biochem Biophys Res Commun. 2009 Sep 25;387(3):482-8.

Paracrine factors of vascular endothelial cells facilitate cardiomyocyte differentiation of mouse embryonic stem cells.
Kado M, Lee JK, Hidaka K, Miwa K, Murohara T, Kasai K, Saga S, Morisaki T, Ueda Y, Kodama I.
Biochem Biophys Res Commun. 2008 Dec 12;377(2):413-8.

Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes.
Egashira K, Nishii K, Nakamura K.
Anat Rec A Discov Mol Cell Evol Biol. 2004 Oct;280(2):973-9.

Primary Cardiomyocyte Cultures

Effect of a photosensitization reaction performed during the first 3 min after exposure of rat myocardial cells to talaporfin sodium in vitro.
Doi M, Ogawa E, Arai T.
Lasers Med Sci. 2017 Aug 5. doi: 10.1007/s10103-017-2298-3

Evaluation of electrical propagation delay with cardiomyocytes by photosensitization reaction in vitro
Marika Doi ; Emiyu Ogawa ; Tsunenori Arai.
Proc. SPIE 10062, Optical Interactions with Tissue and Cells XXVIII, 100620N (February 15, 2017); doi:10.1117/12.2250709

A New In Vitro Co-Culture Model Using Magnetic Force-Based Nanotechnology.
Takanari H, Miwa K, Fu X, Nakai J, Ito A, Ino K, Honda H, Tonomura W, Konishi S, Opthof T, van der Heyden MA, Kodama I, Lee JK.
J Cell Physiol. 2016 Oct;231(10):2249-56.

Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes.
Nakashima T, Ohkusa T, Okamoto Y, Yoshida M, Lee JK, Mizukami Y, Yano M.
Am. J. Physiol. Heart. Circ. Physiol., 2014 May, 306, H1324-33.

Effects of aldosterone on Cx43 gap junction expression in neonatal rat cultured cardiomyocytes.
Suzuki S, Ohkusa T, Sato T, Yoshida M, Yasui K, Miwa K, Lee JK, Yano M, Kodama I, Matsuzaki M.
Circ J. 2009 Aug;73(8):1504-12.

T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers.
Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K.
Life Sci. 2008 Mar 12;82(11-12):554-60.

Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist.
Inoue N, Ohkusa T, Nao T, Lee JK, Matsumoto T, Hisamatsu Y, Satoh T, Yano M, Yasui K, Kodama I, Matsuzaki M.
J Am Coll Cardiol. 2004 Aug 18;44(4):914-22.

Effect of a photosensitization reaction performed during the first 3 min after exposure of rat myocardial cells to talaporfin sodium in vitro.
Doi M, Ogawa E, Arai T.
Lasers Med Sci. 2017 Aug 5. doi: 10.1007/s10103-017-2298-3

Evaluation of electrical propagation delay with cardiomyocytes by photosensitization reaction in vitro
Marika Doi ; Emiyu Ogawa ; Tsunenori Arai.
Proc. SPIE 10062, Optical Interactions with Tissue and Cells XXVIII, 100620N (February 15, 2017); doi:10.1117/12.2250709

A New In Vitro Co-Culture Model Using Magnetic Force-Based Nanotechnology.
Takanari H, Miwa K, Fu X, Nakai J, Ito A, Ino K, Honda H, Tonomura W, Konishi S, Opthof T, van der Heyden MA, Kodama I, Lee JK.
J Cell Physiol. 2016 Oct;231(10):2249-56.

Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes.
Nakashima T, Ohkusa T, Okamoto Y, Yoshida M, Lee JK, Mizukami Y, Yano M.
Am. J. Physiol. Heart. Circ. Physiol., 2014 May, 306, H1324-33.

Effects of aldosterone on Cx43 gap junction expression in neonatal rat cultured cardiomyocytes.
Suzuki S, Ohkusa T, Sato T, Yoshida M, Yasui K, Miwa K, Lee JK, Yano M, Kodama I, Matsuzaki M.
Circ J. 2009 Aug;73(8):1504-12.

T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers.
Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K.
Life Sci. 2008 Mar 12;82(11-12):554-60.

Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist.
Inoue N, Ohkusa T, Nao T, Lee JK, Matsumoto T, Hisamatsu Y, Satoh T, Yano M, Yasui K, Kodama I, Matsuzaki M.
J Am Coll Cardiol. 2004 Aug 18;44(4):914-22.

Cardiac Sheet

Creation of mouse embryonic stem cell-derived cardiac cell sheets.
Matsuura K, Masuda S, Haraguchi Y, Yasuda N, Shimizu T, Hagiwara N, Zandstra PW, Okano T.
Biomaterials. 2011 Oct;32(30):7355-62.

Application of a cell sheet-polymer film complex with temperature sensitivity for increased mechanical strength and cell alignment capability.
Fujita H, Shimizu K, Nagamori E.
Biotechnol Bioeng. 2009 Jun 1;103(2):370-7.

Flk1(+) cardiac stem/progenitor cells derived from embryonic stem cells improve cardiac function in a dilated cardiomyopathy mouse model.
Baba S, Heike T, Yoshimoto M, Umeda K, Doi H, Iwasa T, Lin X, Matsuoka S, Komeda M, Nakahata T.
Cardiovasc Res. 2007 Oct 1;76(1):119-31.

Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells.
Baba S, Heike T, Umeda K, Iwasa T, Kaichi S, Hiraumi Y, Doi H, Yoshimoto M, Kanatsu-Shinohara M, Shinohara T, Nakahata T.
Stem Cells. 2007 Jun;25(6):1375-83.

Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force.
Shimizu K, Ito A, Lee JK, Yoshida T, Miwa K, Ishiguro H, Numaguchi Y, Murohara T, Kodama I, Honda H.
Biotechnol Bioeng. 2007 Mar 1;96(4):803-9.

Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation.
Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T.
Biomaterials. 2006 Sep;27(27):4765-74.

Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium.
Miyagawa S, Sawa Y, Sakaida S, Taketani S,Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T, Matsuda H.
Transplantation. 2005 Dec 15;80(11):1586-95.

Fuzzy linguistic prediction model for sinoatrial node field potential analysis in acute hyperglycemia environment.
Feng Y, Cao H, Wang Y, Zhang Y.
Biomed Mater Eng. 2015 Aug 17;26 Suppl 1:S881-7

Prediction model of sinoatrial node field potential using high order partial least squares.
Feng Y, Cao H, Zhang Y.
Biomed Mater Eng. 2015 Aug 17;26 Suppl 1:S1805-11.

Termination of aconitine-induced atrial fibrillation by the KACh-channel blocker tertiapin: underlying electrophysiological mechanism.
Suzuki K, Matsumoto A, Nishida H, Reien Y, Maruyama H, Nakaya H.
Pharmacol. Sci., 2014 Jul, 125, 406-14.

Heart failure enhances arrhythmogenesis in pulmonary veins.
Chang SL, Chen YC, Yeh YH, Lai YJ, Yeh HI, Lin CI, Lin YK, Lin YJ, Wu TJ, Huang YK, Chen SA, Chen YJ.
Clin Exp Pharmacol Physiol. 2011 Oct;38(10):666-74.

Time-dependent block of ultrarapid-delayed rectifier K+ currents by aconitine, a potent cardiotoxin, in heart-derived H9c2 myoblasts and in neonatal rat ventricular myocytes.
Wang YJ, Chen BS, Lin MW, Lin AA, Peng H, Sung RJ, Wu SN.
Toxicol Sci. 2008 Dec;106(2):454-63.

On the mechanisms of arrhythmias in the myocardium of mXinalpha-deficient murine left atrial-pulmonary veins.
Lai YJ, Huang EY, Yeh HI,Chen YL, Lin JJ, Lin CI.
Life Sci. 2008 Aug 15;83(7-8):272-83.

Loss of mXinalpha, an intercalated disk protein, results in cardiac hypertrophy and cardiomyopathy with conduction defects.
Gustafson-Wagner EA, Sinn HW, Chen YL, Wang DZ, Reiter RS, Lin JL, Yang B, Williamson RA, Chen J, Lin CI, Lin JJ.
Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H2680-92.

Would you like to discover MED64?

MED64: Record important extracellular signals that can be hidden by other systems!

Would you like additional information?

I agree to the terms and conditions

I agree to the GDPR

Need help finding the right product?
Get in touch
+1 (844) 454-3399