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Abstract

FGFR2 gene is frequently amplified in gastric cancer.
Recently, targeting FGFR2 has drawn attention as a form
of gastric cancer therapy, and FGFR-selective inhibitors have
shown promising efficacy in clinical studies. Because over-
coming acquired resistance is a common problem with
molecular targeting drugs, we investigated a resistant mech-
anism of FGFR inhibitors using the gastric cancer cell line
SNU-16, which harbors FGFR2 amplification. We estab-
lished single-cell clones of FGFR inhibitor–resistant SNU-16
(AZD-R) by continuous exposure to AZD4547, a selective
FGFR inhibitor. To screen the genetic alterations acquired in
AZD-R, we ran a comparative genomic hybridization assay
and found an amplification of Chr7q34 region. The chro-
mosomal breakpoints were located between the 12th and

the 13th exon of jumonji C domain containing histone
demethylase 1 homolog D (JHDM1D) and between the 3rd
and the 4th exon of BRAF. We sequenced cDNA of the
AZD-R clones and found fusion kinase JHDM1D-BRAF,
which has previously been identified in primary ovarian
cancer. Because JHDM1D–BRAF fusion lacks a RAS-binding
domain, the dimerization of JHDM1D–BRAF was enhanced.
A cell growth inhibition assay using MEK inhibitors and
RAF-dimer inhibitors indicated the dependence of AZD-R
clones for growth on the MAPK pathway. Our data provide a
clinical rationale for using a MEK or RAF dimer inhibitor to
treat FGFR2-amplified gastric cancer patients who have
acquired resistance through the JHDN1D–BRAF fusion.
Mol Cancer Ther; 17(10); 2217–25. �2018 AACR.

Introduction
FGFRs forma family of receptor tyrosine kinases that consists of

four highly conserved family members (FGFR1-4). Binding of
FGF ligands to FGFR triggers activation of FGFR, causing diverse
signals to be transmitted downstream, such as in the Ras/MAPK,
PI3K/Akt, PLCg/PKC, and STAT pathways (1–3). Although FGFR
signaling is thus essential for biological processes and homeo-
stasis, aberration of FGFR signaling is emerging as a potent
oncogenic driver. To date, many kinds of FGFR genetic alterations
associated with tumor growth and malignancy have been
reported (4–6). FGFR2 amplification is found in 10% of patients
with gastric cancer, mainly in the diffuse type (7, 8), and it is
mutually exclusive with gene amplifications of erb-b2 receptor
tyrosine kinase 2 (ERBB2) or the MET proto-oncogene, receptor
tyrosine kinase (MET; ref. 8). The FGFR2 amplification in
gastric cancer is also associated with poor prognosis and lym-
phatic invasion (8, 9). Preclinical studies demonstrate that a
knockdown of FGFR2 protein in FGFR2-amplified gastric cancer

cell lines leads to cell growth inhibition, and the cell lines are
sensitive to FGFR-selective inhibitors not only in vitro but
also in vivo (10–13). These lines of evidence support the devel-
opment of FGFR inhibitors for gastric cancers harboring FGFR2
amplification.

Currently, several FGFR-selective inhibitors, such as AZD4547
(11), NVP-BGJ398 (12), and Debio 1347/CH5183284 (13, 14),
are being used in clinical trials with patients who have FGFR
genetic alterations in several tumor types. In one study for gastric
cancer, AZD4547 demonstrated promising efficacy in patients
harboring FGFR2 amplification (15), with three out of six FGFR2-
amplified patients obtaining partial response on AZD4547
monotherapy. Notably, the response was seen only in patients
with a high level of FGFR2 amplification. At present, very few
preclinical studies investigate acquired resistance to FGFR inhi-
bitors, and no report about resistance in patients with FGFR2-
amplified gastric cancer has been published. Recently, however,
the first genetic mechanism of acquired resistance to FGFR inhi-
bition in patients was reported in FGFR2 fusion intrahepatic
cholangiocarcinoma (ICC; ref. 16). In patients with FGFR2
fusion–positive ICC in a phase II trial, FGFR inhibitor
NVP-BGJ398 displayed promising efficacy, but when several
patients became resistant to NVP-BGJ398, a genomic analysis of
cell-free circulating tumor DNA revealed that the patients had
acquired a mutation in the FGFR2 kinase domain that conferred
resistance to FGFR inhibition. Moreover, several preclinical stud-
ies suggested multiple resistant mechanisms, such as MET/ERBB
receptor kinase activation (17–19), PI3K pathway activation
(20, 21), PKC-mediated inhibition of GSK3b (22), epithelial–
mesenchymal transition (23), acquired FGFR2 rearrangement
(24), and so on. Therefore, acquired resistance to FGFR inhibition
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is a growing issue, and understanding its mechanism would
provide a novel therapeutic option for overcoming it.

In this study, we generated an FGFR inhibitor-resistant FGFR2-
amplified gastric cancer cell line and identified a clinically relevant
and actionable BRAF fusion kinase. Here, we characterize the
fusion kinase and propose a new therapeutic option for FGFR
inhibitor–resistant patients harboring the BRAF fusion kinase.

Materials and Methods
Reagents

AZD4547 (11), AZD2171 (25), CH4987655 (26), PD0325901
(27), crizotinib (28), and GDC-0941 (29) were synthesized at
Chugai Pharmaceutical Co., Ltd., according topublished literature.
NVP-BGJ398 (30)waspurchased fromActiveBiochem,PD173074
(31) fromSigma-Aldrich,BGB659(32) fromTocrisBioscience,and
erlotinib, lapatinib, OSI-906 (33), trametinib, LY3009120 (34),
AZ628 (35), vemurafenib, PLX4720 (36), andMK-2206 (37) from
Selleck. The following antibodies were used: anti–phospho-FGF
receptor (Tyr653/654), anti–phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204), anti-p44/42MAPK (Erk1/2), anti–phospho-Akt
(Ser473),anti-Akt, anti–phospho-MEK1/2(Ser217/221),andanti-
MEK1/2 were from Cell Signaling Technology; anti-FGFR2 and
anti-FLAGwere from Sigma-Aldrich; anti-BRAF (F-7) for detection
of exon 1 to 3 of BRAF, anti-Myc, and anti-GAPDH (FL-335) were
from Santa Cruz Biotechnology; and anti-BRAF (N2C1) for detec-
tion of exon 6 to 11 of BRAF was from GeneTex.

Cells and cell culture
SNU-16 and COS-7 cells obtained from ATCC were cultured

according to the supplier's instructions. SNU-16 and COS-7 cells
were obtained more than one year prior to the experiments and
were propagated for less than 6 months after thawing. AZD4547-
resistant SNU-16 clones were cultured in RPMI1640 supplemen-
ted with 10% FBS and 2 mmol/L AZD4547. Infection of Myco-
plasma was not observed in cell lines we used by routinely
performed PCR-based mycoplasma detection method.

Establishment of AZD4547-resistant SNU-16 clones
Parental SNU-16 cells were cultured with AZD4547. The con-

centration of AZD4547was gradually increased to a level at which
the resistant cells had growth kinetics similar tountreated parental
cells, and was raised from 20 nmol/L to 2 mmol/L over several
months. AZD4547-resistant SNU-16 clones were obtained by the
limiting dilution method.

Cell viability assay
Cells were cultured at 37�C in 96-well plates with compounds

that were diluted 4-fold from 20 mmol/L to 0.31 nmol/L or
2 mmol/L to 0.031 nmol/L (trametinib). After 96 hours of incu-
bation, cell viability was measured with the Cell Counting Kit-8
(Dojindo) or the CellTiter-Glo Luminescent Cell Viability Assay
Kit (Promega). The antiproliferative activity was calculated by the
formula (1� T/C)� 100%,whereT represents the signal intensity
of cells with drugs andC represents that of untreated control cells.
The IC50 valueswere calculatedwith nonlinear regression analysis
by using GraphPad.

Western blot analysis
Cells were lysed with Cell Lysis Buffer (Cell Signaling Tech-

nology) containing protease inhibitor Complete (Roche) and

phosphatase inhibitor PhosSTOP (Roche). Lysates were sub-
jected to SDS-PAGE, followed by semidry transfer to PVDF
membrane using Trans-Blot Turbo Transfer system (Bio-Rad
Laboratories). Nonspecific binding of proteins to the mem-
brane was blocked by incubation in Blocking One (Nacalai
Tesque). Membranes were incubated with antibodies diluted in
Can Get Signal (Toyobo). Immunodetection was performed
with Chemi-lumi One Super (Nacalai Tesque) and LAS-4000
(Fuji Film).

Comparative genomic hybridization
Sample DNA and control DNA were separately labeled with

Cy5-dUTP and Cy3-dUTP, respectively. Then, they were mixed
and hybridized to human genome 180K standard microarrays
(Agilent Technologies) according to the manufacturer's instruc-
tions. The hybridization signals were detected with Agilent DNA
Microarray Scanner and visualized with DNA Analytics Worksta-
tion (Agilent Technologies), where signal ratios relative to the
control DNA were plotted in log2 scale against the sequence
position.

RT-PCR and Sanger sequencing
RT-PCR was performed with the Transcriptor Universal cDNA

Master (Roche) and PCR (30 cycles of 30 seconds at 94�C, 30
seconds at 60�C, and 1 minute at 68�C) was performed with the
TksGflexDNAPolymerase (TaKaRaBio).Theprimers for JHDM1D
exon 5 and BRAF exon 8were 50-AGGCAGACAGCAAAATGACAC-
30 and 50-TTTATATGCACATTGGGAGCTG-3, those for JHDM1D
exon 1 and BRAF exon 10 were 50-CCCGTGTACTGTGTGTGCC-30

and 50-CTTCCTTTCTCGCTGAGGTC-3, those for JHDM1D exon
8/9 and BRAF exon 5 were 50-CAGCTCAGGTGTTATGAGATG-30

and 50-AGTTGTGTGTTGTAAGTGGAAC-30 and those for GAPDH
were 50- ACCAGGGCTGCTTTTAACTC-30 and 50- TCAGGTCCAC-
CACTGACACG-30. PCR products were sequenced with the
following primers: 50-CTTTTCAAATTCCCTTTCTTTG-30 and
50-AGCGGAAACCCTGGAAAAG-30.

mRNA knockdown by siRNA
BRAF individual siRNA targeting exon 2/3 (50-CACCAUCAAU-

AUAUCUGGAGGCCUA-30), BRAF individual siRNA targeting
exon 8 (50-CAUCAGCUCCCAAUGUGCAUAUAAA-30), JHDM1D
individual siRNA targeting exon 6 (50-CCCAAGCCAUUUGUU-
CAGAAAUAUU-30), and nontargeting scrambled control siRNA
(Stealth RNAi siRNA negative control at medium GC level) were
purchased from Thermo Fisher Scientific. Reverse transfections
were conducted with Lipofectamine RNAiMAX (Thermo Fisher
Scientific) with 50 nmol/L of siRNA. Forty-eight hours after the
transfection, cell lysates were collected.

Immunoprecipitation assay
cDNAs encoding BRAFWT, BRAF V600E mutant, or JHDM1D-

BRAF fusion were inserted into the pCXND3 vector (Kaketsuken)
and used to transfect COS-7 cells. COS-7 cells were transfected
with the FLAG-tagged andMyc-tagged expression construct alone
or in combination, using the lipofectamine 2000 reagent (Thermo
Fisher Scientific). At 24 hours posttransfection, cells were lysed in
Cell Lysis Buffer (Cell Signaling Technology) and immunopre-
cipitation was performed with anti-FLAGM2Affinity Gel (Sigma-
Aldrich). Precipitates were washed three times with Cell Lysis
Buffer and eluted at 95�C for 5minuteswith Reducing Reagent for
SDS-PAGE (Thermo Fisher Scientific).
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Spheroid assay
Cells were cultured at 37�C in PrimeSurface96U (Sumitomo

Bakelite) for three-dimensional culture with compounds that
were diluted 4-fold from 20 mmol/L to 0.31 nmol/L or 2 mmol/L
to 0.031 nmol/L (trametinib). After 14 days of incubation,
spheroids were scanned and their areas were quantified with
Cell3 iMager CC-5000 (Screen).

Results
Establishment of an FGFR inhibitor–resistant strain of gastric
cancer cell line SNU-16 harboring FGFR2 amplification

To understand the mechanisms of resistance to FGFR inhibi-
tion in gastric cancer harboring FGFR2 amplification, we gener-
ated a model that was resistant to the FGFR-selective inhibitor

AZD4547 using the FGFR2-amplified SNU-16 gastric cancer cell
line. AZD4547-resistant SNU-16 (AZD-R) cells were selected by
culturing in gradually increasing concentrations of AZD4547
until cells were able to grow at 2 mmol/L. Then, four single-cell
clones were isolated (Fig. 1A). We evaluated the resistance of
AZD-R cells to AZD4547 in an antiproliferative assay. The IC50

value for cell viability of each clone was about 1,000-fold higher
than that of parental cells (Fig. 1B; Supplementary Table S1A). In
addition, AZD-R cells showed cross-resistance to other FGFR
inhibitors, NVP-BGJ398, PD173074 (38), and AZD2171
(Fig. 1C; Supplementary Table S1A; ref. 39). Consistently,
2 mmol/L AZD4547 did not suppress ERK phosphorylation and
AKT phosphorylation in AZD-R clones (Fig. 1D). Interestingly,
regardless of AZD4547 exposure, FGFR2 phosphorylation in
AZD-R cells disappeared and was accompanied by a substantial

Figure 1.

Establishment of FGFR inhibitor–
resistant gastric cancer cell line
SNU-16 harboring FGFR2
amplification.A, Schema of process to
establish AZD4547-resistant SNU-16
cells. B, Cell growth inhibition by
AZD4547 in SNU-16 parental cell and
four AZD-R clones. Cells were
incubated with AZD4547 for 4 days,
and cell viability was measured. C, Cell
growth inhibition by FGFR inhibitors
NVP-BGJ398, PD173074, and AZD2171
in SNU-16 parental cell and four AZD-R
clones. Cells were incubated with
compound for 4 days, and cell viability
was measured. D, Phosphorylation in
SNU-16 parental cells and four AZD-R
clones. After 4-hour incubation of
2 mmol/L AZD4547, SNU-16 parental
cell and four AZD-R clones were lysed
and analyzed by Western blot
analysis.
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Figure 2.

Sensitivity of SNU-16 parental cell and AZD-R clones to an array of compounds. A, Cell growth inhibition by receptor tyrosine kinase inhibitors: erlotinib
(an EGFR inhibitor), lapatinib (a HER2 inhibitor), crizotinib (a MET/ALK inhibitor), and OSI906 (an IGF1R/INSR inhibitor) in SNU-16 parental cells and four AZD-R
clones. Cells were incubated with each compound for 4 days, and cell viability was measured. B, Cell growth inhibition in SNU-16 parental cells and four AZD-R
clones by MAPK or PI3K pathway inhibitors: CH4987655, trametinib, PD0325901 (all MEK inhibitors), GDC-0941 (a pan-PI3K inhibitor), and MK-2206 (an AKT
inhibitor). Cells were incubated with each compound for 4 days, and cell viability was measured. C, Signal engagement by MEK inhibitor. Cells were treated
with a serial concentration of CH4987655 and incubated for 2 hours before harvesting. Cells were lysed and analyzed by Western blot analysis.
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decrease in FGFR2 protein expression (Fig. 1D). These data
suggested that AZD-R cells lost their dependence on FGFR2 gene
amplification and acquired dependence on an alternative
pathway.

Enhanced sensitivity of AZD-R cells to MEK inhibition
To identify which pathway the AZD-R cell growth was depen-

dent upon, we determined sensitivity of these lines to an array of
11 compounds that inhibit diverse signaling pathways other than
FGFR. The IC50 values for cell viability of receptor tyrosine kinase
inhibitors, EGFR inhibitor erlotinib, HER2 inhibitor lapatinib,
MET/ALK inhibitor crizotinib, and IGF1R/INSR inhibitor
OSI-906 did not change significantly (Fig. 2A; Supplementary
Table S1A). Then, we checked the sensitivity to intracellular signal
inhibitors. AZD-R cells displayed enhanced sensitivity to three
MEK inhibitors (CH4987655, trametinib, and PD0325901) but
not to the PI3K inhibitor GDC-0941 or the AKT inhibitor
MK-2206 (Fig. 2B; Supplementary Table S1A). Also, chemother-
apy agents 5-FU and oxaliplatin showed the same antiprolifera-
tive activity against parental cells and AZD-R clones (Supplemen-
tary Fig. S1; Supplementary Table S1A). Although the suppression
of phospho-ERK by CH4987655 in SNU-16 parental cells was
accompanied with upregulation of phospho-MEK, in AZD-R
clone 1 cells the compound could suppress phospho-ERKwithout
any upregulation of phospho-MEK (Fig. 2C). In addition,
CH4987655 did not reactivate phospho-FGFR in AZD-R cells
(Supplementary Fig. S2). A MEK inhibitor induces MEK phos-
phorylation in cancers with RAS mutation or activated receptor
tyrosine kinase, but not in BRAF-activated cancers, such as BRAF
V600E cancer (40). Therefore, we hypothesized that AZD-R cells
acquired a dependency on the MAPK pathway by activating RAF
and lost FGFR dependency.

Identification of a clinically relevant and actionable BRAF
fusion kinase, JHDM1D–BRAF, in AZD-R cells

To identify the genetic alterations that had been acquired in
AZD-R clones, we screened point mutations in major oncogenes
with qBiomarker Somatic Mutation PCR Array (Qiagen) but did
not find any acquired mutation in the assay, including BRAF
V600E (Supplementary Fig. S3). Then, we performed a compar-
ative genomic hybridization (CGH) assay to identify copy num-
ber changes in AZD-R cells. CGH data revealed that the Chr7q34
region was dramatically amplified in the genome of AZD-R
clones. The CGH data of AZD-R Clones are shown (Fig. 3A;
Supplementary Fig. S4). In parental cell, the focal amplification
in the region was not observed in in-house analysis and Cancer
Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle).
The amplified Chr7q34 region contained 10 genes, and the
chromosomal breakpoints were located between the 12th and
the 13th exon of jumonji C domain containing histone demethy-
lase 1 homolog D (JHDM1D) and between the third and the
fourth exonofBRAF. (Fig. 3B). Because the copynumbers ofBRAF
and JHDM1D in AZD-R cells were similar (Supplementary Table
S1B), we hypothesized that AZD-R cells possessed JHDM1D–
BRAF fusion gene. The putative structure of JHDM1D–BRAF
fusion is illustrated (Fig. 4A). The JHDM1D–BRAF fusion protein
was seen to possess a kinase domain but to lack part of the RAS-
binding domain (RBD). We performed RT-PCR with mRNA of
AZD-R cells and amplified PCR products with primers that are
located on exon 5 of JHDM1D and exon 8 of BRAF, on exon 1 of
JHDM1D and exon 10 of BRAF, or on exon 8/9 of JHDM1D and

exon5ofBRAF. PCRproductswere consistent in sizewith those of
JHDM1D-BRAF cDNA (Fig. 4B), and amplified fragments were
sequenced by Sanger sequencing. The sequence waveform of
AZD-R clone 1 is shown as a representative (Fig. 4C), and the
other three clones had the same sequence (Supplementary Fig.
S5). Then, we examined JHDM1D–BRAF protein expression in
AZD-R cells. Western blot analysis using an antibody that recog-
nizes a region within exon 6 and exon 11 of BRAF (Antibody C)
suggested that AZD-R cells mainly expressed two sizes of BRAF
protein, 84 and 129 kDa (Fig. 4D). According to amino acid
sequences, 84 kDa was BRAF WT protein and 129 kDa was
JHDM1D–BRAF fusion protein. Consistently, an antibody recog-
nizing a regionwithin exon 1 and exon 3 of BRAF detected justWT
protein (Fig. 4D). To confirm that these bands were BRAF pro-
teins, we treated parental SNU-16 cells or AZD-R clone 1 cells with
nontargeting siRNA, BRAF siRNA targeting 50-region, BRAF siRNA
targeting 30-region, and JHDM1D siRNA targeting 50-region and
detected BRAF protein expression with Antibody C. As a result,
although BRAF siRNA targeting 30-region suppressed both 84 and
129 kDa proteins, BRAF siRNA targeting 50-region suppressed
only 84 kDa protein, and JHDM1D siRNA targeting 50-region
suppressed only 129 kDa protein (Fig. 4E), which suggests that
AZD-R cells expressed BRAF WT protein and JHDM1D–BRAF
fusion protein. More importantly, the JHDM1D–BRAF fusion has
recently been identified in patients with primary ovarian cancer
(41) and is therefore a clinically relevant fusion.

Figure 3.

Comparative genomic hybridization assay of SNU-16 parental cell and
AZD-R clones. A, Vertical array CGH profile of chromosome 7 of AZD-R clone 1.
Normalized log2 signal ratios were plotted using DNA Analytics Workstation.
B, Magnified view of the vertical array CGH profile around Chr7q34 region.
Ten genes are included in the amplified area: JHDM1D, LOC100134229,
SLC37A3, RAB19, MKRN1, DENND2A, ADCK2, LOC100134713, NDUFB2,
and BRAF.
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Contribution of constitutively dimerized JHDM1D–BRAF to
proliferation of AZD-R cells

BRAF fusions have been reported in several tumor types (41).
The lack of N-terminal region of RAF in BRAF fusions negatively
regulates RAF activity and induces RAS-independent RAF dimer-
ization and kinase activation (42). Because JHDM1D–BRAF lacks
part of the RBD in RAF, we evaluated the dimerization activity of
JHDM1D–BRAF fusion protein. We expressed flag or myc-tagged
BRAF WT, BRAF V600E, or JHDM1D-BRAF in COS-7 cells and
immunoprecipitated the flag-tagged protein. We observed more
dimer formation in JHDM1D–BRAF than in BRAF WT or BRAF
V600E (Fig. 5A). To elucidate whether the JHDM1D–BRAF dimer
or the monomer contributes to the proliferation of AZD-R cells,
we determined the sensitivity of AZD-R cells to BRAF monomer
inhibitors, vemurafenib and PLX4720, and to BRAF dimer inhi-
bitors, LY3009120, AZ628, and BGB659 (32, 43, 44). As a result,
AZD-R clone 1 was more sensitive to BRAF dimer inhibitors than
BRAF monomer inhibitors (Fig. 5B; Supplementary Table S1A),
and other clones showed similar results (Supplementary Fig. S6;

Supplementary Table S1A). We also observed similar results in an
anchorage-independent assay (Supplementary Fig. S7). Consis-
tent with these data, BRAF dimer inhibitors suppressed phospho-
MEK and phospho-ERK in AZD-R cells (Fig. 5C), but BRAF
monomer inhibitors did not (Fig. 5D). Taken together, the find-
ings suggest that JHDM1D-BRAF induced RAS-independent
dimerization and contributed to the proliferation of AZD-R cells,
thus conferring resistance to FGFR inhibitors.

Discussion
In this study, we found that JHDM1D–BRAF played a crucial

role in the resistance to FGFR inhibition in an FGFR2-amplified
gastric cancer model. This is the first report of a BRAF fusion
kinase conferring resistance to FGFR inhibition, and the first
time a mechanism of downstream signal activation has been
clarified. We obtained four independent clones, all of which
harbored the same isoform of JHDM1D–BRAF (Fig. 4B).
Although it was possible that these clones derived from one

Figure 4.

Identification of JHDM1D–BRAF fusion kinase. A, Schematic representation of JHDM1D-BRAF fusion gene. B, Agarose gel separation of RT-PCR amplicons
specific to JHDM1D-BRAF fusion. Three pairs of primers were designed. Exon 5 of JHDM1D and exon 8 of BRAF, exon 1 of JHDM1D and exon 10 of BRAF,
and exon 8/9 of JHDM1D and exon 5 of BRAF. Expected band sizes were 1,651, 2,307, and 712 bp, respectively. C, Amplified fragments were sequenced by
Sanger sequencing. Representative sequencewaveforms are shown.D, BRAF protein detection byWestern blot analysis in SNU-16 parental cells and AZD-R clones.
Two primary antibodies that recognize exon 6-11 of BRAF or exon 1-3 of BRAF were used. E, siRNA effects on BRAF protein expression. Cells were seeded
and treatedwith indicated siRNAs for 48 hours before cells were lysed and analyzed byWestern blot analysis. BRAF-50 or BRAF-30 siRNA recognizes BRAF exon 2/3
or BRAF exon 8, respectively, and JHDM1D-50 siRNA recognizes JHDM1D exon 6. Two primary antibodies that recognize exon 6 to 11 of BRAF or exon 1 to 3
of BRAF were used.
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identical cell, these clones had different FGFR2 and JHDM1D–

BRAF expression levels and copy numbers (Fig. 1D; Fig. 4D;
Supplementary Table S1B) and must have derived from four
different cells. Therefore, the results show that all independent
clones inevitably acquired resistance through formation of
JHDM1D–BRAF, so this fusion could be one of the major
mechanisms of resistance to FGFR inhibition in gastric cancer
harboring FGFR2 amplification.

Although most of the BRAF fusions lose the whole RBD (41),
JHDM1D–BRAF lacks a part of the RBD. Previous studies showed
that Arg166 and Val168 of BRAF were essential to associate with
RAS (45, 46), and these sites are located on BRAF exon 3, which
JHDM1D–BRAF does not contain. This suggests that even partial
loss of the RBD could induce RAS-independent dimerization and
activation of JHDM1D–BRAF. Indeed, we confirmed that the
dimerization activity of JHDM1D–BRAF was more potent than
that of BRAF wild type (Fig. 5A). To confirm that the JHDM1D–

BRAF dimer, not the monomer, was responsible for proliferation
of AZD-R cells, we looked at the sensitivity of AZD-R cells to RAF
monomer inhibitors and RAF dimer inhibitors. Previous studies

showed that vemurafenib and PLX4720, which we used asmono-
mer inhibitors, cannot bind the second site of the BRAF dimer
when thefirst is occupied bydrug (32, 43), and thus donotwholly
suppress the activity of dimerized BRAF. In the case of JHDM1D–

BRAF, the sensitivity of AZD-R clones tomonomer inhibitors was
quite low (Fig. 5B; Supplementary Fig. S6), and these inhibitors
could not suppress the MAPK pathway (Fig. 5D). LY3009120,
AZ628, and BGB659, which we used as dimer inhibitors, are able
to bind the second site of the RAF dimer even when the first is
occupied by drug (32, 43, 44), and in fact these dimer inhibitors
were active in the AZD-R clones (Fig. 5B; Supplementary Fig. S6)
and inhibited the MAPK pathway (Fig. 5C). Although the results
show that RAF dimer inhibitors are much better than monomer
inhibitors, the efficacy of RAF dimer inhibitors can be improved
still further. Studies in RAS-mutant cancer cells have shown that
current RAF dimer inhibitors paradoxically induce RAF dimeriza-
tion in these cells, which show highly activated RAF (43, 44), so
even in the presence of these drugs, RAF signaling would partially
be leaked. Therefore, a novel RAF inhibitor that can bind to the
second site of the RAF dimer and does not induce dimerization is

Figure 5.

Contribution of constitutively
dimerized JHDM1D–BRAF to
proliferation of AZD-R cells. A,
Comparison of dimerization activity.
COS-7 cells were transfected with
expression vectors encoding BRAF
WT, BRAF V600E, or JHDM1D–BRAF
and subsequently lysed. The lysates
were immunoprecipitated with
anti-FLAG M2 Affinity Gel and
detected in Western blots using an
anti-FLAG or anti-Myc antibody. Total
cell lysates were also analyzed by
Western blot analysis. B, Cell growth
inhibition by RAF dimer inhibitors
(LY3009120, AZ628, and BGB659),
and by RAF monomer inhibitors
(vemurafenib and PLX4720) in AZD-R
clone 1. Cellswere incubatedwith each
compound for 4 days, and cell viability
was measured. C and D, Signal
engagement by RAF inhibitors. AZD-R
clone 1 cells were treated with a serial
concentration of an RAF dimer
inhibitor (AZ628 or LY3009120; C) or
an RAF monomer inhibitor (PLX4720
or vemurafenib; D) and incubated
for 4 hours before harvesting. Cells
were lysed and analyzed by Western
blot analysis.
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warranted not only for the treatment of JHDM1D–BRAF cancer
but also for RAS-mutant cancer.

Interestingly, FGFR2 phosphorylation in AZD-R cells disap-
peared and was accompanied by a substantial decrease in FGFR2
protein expression (Fig. 1D). We suggest that a switching addic-
tion between FGFR2 and JHDM1D–BRAF occurred as a mecha-
nism of resistance to FGFR inhibitor. The similar findings in
preclinical study have been reported in an alectinib resistance
between ALK and IGF1R or HER3 and in a lapatinib resistance
between HER2 and FGFR2 (47, 48). Because AZD-R cells no
longer depend on FGFR signaling and a MEK inhibitor did not
reactivate FGFR (Supplementary Fig. S2), the combination ther-
apy of a FGFR inhibitor and a MAPK inhibitor would not work.

In conclusion, our data indicated that constitutively dimerized
JHDM1D–BRAF, which has been also identified in patients with
ovarian cancer, provided the growth capability in SNU-16 cells
instead of amplified FGFR2 and thus conferred resistance to FGFR
inhibition. RAF dimer inhibitors or MEK inhibitors may be a
treatment option for patients with FGFR2-amplified gastric cancer
who have acquired resistance to FGFR therapy.
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